A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

Michael H. Miller, PE
Duke Energy
Oconee Nuclear Station
Seneca, SC
CURRENT NUCLEAR INDUSTRY I&C STATUS

- 25-35 YEAR OLD LEGACY SYSTEMS
- PREDOMINANTLY EARLY ANALOG WITH OLDER PLANTS SIGNIFICANTLY PNEUMATIC
- INCREASING O&M COSTS
- LACK OF SPARE PARTS
- LOSS OF KNOWLEDGABLE MAINTENANCE STAFF
- DETREMENTAL OPERATIONAL IMPACT
- RELIABILITY & AVAILABILITY CONCERNS
- POTENTIAL CHALLENGES TO SAFETY SYSTEMS
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

ADDITIONAL SOURCES OF PLANT PERFORMANCE PRESSURES

- NUCLEAR REGULATORY COMMISSION (NRC)
- INSTITUTE of NUCLEAR PLANT OPERATORS (INPO)
- CORPORATE MANAGEMENT
- SYSTEM DISPATCHER
- PLANT MANAGEMENT
- FELLOW PLANT EMPLOYEES
- WALL STREET (HENCE SHAREHOLDERS)
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

FROM AMERICAN NUCLEAR SOCIETY’S “NUCLEAR NEW”, DECEMBER 2006

47 PLANTS CURRENTLY RELICENSED

- LICENSED 2029 – 2046

7 PLANTS CURRENTLY UNDER REVIEW

23 ADDITIONAL PLANTS EXPECTED TO RELICENSE OVER NEXT 10 YEARS
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

SIGNIFICANT I&C UPGRADES NEEDED TO ENSURE RELIABLE OPERATION

JIG-SAW PUZZLE OF STRATEGIES

- STATUS QUO – REMANUFACTURE or R&R
- UPGRADE to CONVENTIONAL DCS
- SYSTEM STRATEGY with MULTIPLE VENDORS (BEST IN CLASS)
- TOTAL INTEGRATION USING SINGLE VENDOR (THOROUGHLY PLANNED)

LOGISTICAL CONSIDERATIONS

- MOST OBSOLETE FIRST
- MOST IMPORTANT FIRST
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

- **DEVELOP A STRATEGY THAT WILL LAST**
 - LONG TERM
 - SCALABLE
 - FLEET APPLICABLE
 - VENDOR INDEPENDENT
- **LEADING EDGE TECHNOLOGIES**
- **COMMODITY SOLUTION**
- **GLOBAL APPLICATIONS**
- **LOW SUPPORT COSTS**
- **IMPROVED HUMAN SYSTEMS INTERFACE**
DEVELOP A STRATEGY THAT WILL LAST

- **LONG TERM APPLICATION**
 - 30 YEARS OF ADDITIONAL LICENSE
 - ELIMINATE HISTORICAL SPARE PARTS CONCERNS
 - ELIMINATE KNOWLEDGE LOSS
 - ELIMINATE PROPRIETARY “SHACKLES”

- **SCALABLE**
 - EASE OF EXPANSION
 - CABLING/POWER CONSUMPTION/HSI VOLUME

- **FLEET APPLICABLE**
 - NON-NUCLEAR APPLICABILITY

- **VENDOR INDEPENDENT**

- **LOSE THE SHACKLES OF THE PAST**
 - I/O LIMITATIONS
 - ADDITIONAL SUPPORT REQUIREMENTS
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

LEADING EDGE TECHNOLOGIES

- **FIELDBUS, PC-ETHERNET, CONVENTIONAL DCS, PLC’s OR OTHERS?**
 - DIFFERENT PERSPECTIVES
 - ADVANTAGES TO EACH

- **NON-NUCLEAR SAFETY RELATED (N-NSR) APPLICATIONS**
 - TURBINE & AUXILIARY BUILDING LOCATIONS
 - MILD ENVIRONMENT
 - TEMPERATURES: 30 – 110 DEGREES F
 - RADIATION: < THAN 10E4 TID
 - SEISMIC: NO OBE/SSE (INTEGRITY REQUIRED)

- **APPLIED ASPECTS OF NSR DIGITAL SYSTEMS UPGRADE STRATEGY**
 - USED REQUIREMENTS TRACABILITY MATRIX (RTM)
 - FAILURE MODES & EFFECTS ANALYSIS (FMEA)
 - USE OF VENDOR VERIFICATION & VALIDATION
 - SYSTEM DESIGN DESCRIPTION
 - HARDWARE
 - SOFTWARE
 - APPLICATION OF ADDITIONAL END USER SOFTWARE QUALITY ASSURANCE AND CONFIGURATION MANAGEMENT PROGRAM
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

COMMODITY SOLUTION

- NO SINGLE VENDOR DEPENDENCIES FOR NON-NSR COMPONENTS
 - ENTIRE SYSTEMS SHOULD BE COMMODITY PRODUCTS
 - NOT YET COMPLETELY THERE – VERY CLOSE
 - STILL CHASING UNIVERSAL INTEROPERABILITY

- SOME LEGACY ISSUES STILL MAKE FULL COMMODITY BASED FIELDBUS SYSTEMS A GOAL
GLOBAL APPLICATIONS

- BROAD BASED
 - NOT INDUSTRY DEPENDENT
 - INCREASING OPERATING BASE
 - USERS GROUP SHARING OPPORTUNITIES
 - LESSONS LEARNED
 - PROBLEMS
 - APPLICATION INTELLIGENCE AQUISITION

- POTENTIAL FOR OVERHEAD REDUCTIONS
 - SPARE PARTS DEPOTING
 - RESOURCE SHARING
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

- LOWER SUPPORT COSTS
 - MAINTENANCE
 - CALIBRATIONS & REPAIRS
 - ENGINEERING
 - SYSTEM SUPPORT
 - MODIFICATIONS
 - OPERATIONS
 - EFFICIENCY GAINS
 - SUPPLY CHAIN
 - REDUCED INVENTORIES
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

IMPROVED HUMAN SYSTEMS INTERFACE

- MOVEMENT FROM DISCRETE INTERFACES TO ‘SOFT’ INTERFACE
- BETTER & FASTER INFORMATION AWARENESS
 - NOT JUST DEVICE FUNCTIONAL SPEEDS – HUMAN COGNITIVE SPEED THROUGH BETTER HSI
- EXISTING NUCLEAR PLANTS NOT READY FOR THE “GLASS COCKPIT” JUST YET
 (ALL CRT/PLASMA/LCD CONTROL ROOM – ALSO REGULATORY ISSUES WITH SOFTWARE COMMON MODE FAILURE)
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDbus APPLICATION

STRATEGY DETERMINATION

5 POTENTIAL VENDORS
3 FINALISTS
2 VENDORS WITH REAL FIELDbus CAPABILITIES

SMAR SELECTED AS VENDOR DUE TO SUPERIOR FFB CAPABILITIES AND ABILITY TO MEET PLANT SPECIFIC CUSTOMIZING
TECHNOLOGY ADVANTAGES

- FF SELECTED OVER CONVENTIONAL DCS TO ELIMINATE HISTORICAL VENDOR DEPENDENCY AND PHYSICAL REQUIREMENTS
- FOUNDATION FIELDBUS ALLOWS CONTROL STRATEGY TO BE “PUSHED” DOWN TO LOOP LEVEL AT THE ACTUAL FIELD DEVICES
- FF SELECTED OVER TYPICAL “MANUFACTURING” NETWORKS DUE TO MORE “PROCESS” FRIENDLY CAPABILITIES
- FF PROVIDES MORE “DETERMINISTIC” CONTROL CONFIGURATION THAN PC/ETHERNET STRATEGY
- DETERMINISTIC CONTROL A MAJOR CONSIDERATION FOR THE NUCLEAR USER
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELD BUS APPLICATION

OCONEE CONTROL ROOM
PRIOR TO MODIFICATION

1960’S CONFIGURATION
LARGE NUMBER OF DISCRETE INTERFACE DEVICES
OBSOLETE PNEUMATIC & AGING ANALOG
INCREASED MAINTENANCE AND AVAILABILITY ISSUES
OBSOLETE CONTROL ROOM RECORDERS

RECORDERS ORIGINALLY USED FOR OPERATOR INDICATIONS AS WELL AS PROCESS RECORDS

ELIMINATING 95% OF RECORDERS

DATA RETENTION ON PLANT COMPUTER

VIDEO/PAPER RECORDERS REMAIN FOR MINIMUM SET OF PROCESS TRENDING REQUIREMENTS
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

TYPICAL PNEUMATIC CONTROL DEVICES

LARGE NUMBERS OF OBSOLETE PNEUMATIC CONTROL DEVICES THROUGHOUT BALANCE OF PLANT

INTEGRATION INTO FF AND CONTROL ROOM HUMAN SYSTEM INTERFACES
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

TYPICAL FIELD HAND CONTROLLER

PNEUMATIC HAND CONTROL DEVICES PLACED THROUGHOUT PLANT

LEGACY FROM STAFF INTENSIVE DESIGN STRATEGIES OF THE PAST
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

TYPICAL INTERNAL CONTROL BOARD CONDITION

30+ YEARS OF HARDWARE AND WIRING INSTALLATIONS

PNEUMATIC AND ELECTRICAL DEVICES

OVERCROWDED AND DIFFICULT TO WORK IN
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

MAINTENANCE TRAINING FACILITY USED AS TEST BED FOR PCS FIELDBUS DEVICES

DEVELOPMENT OF GRAPHICAL USER INTERFACE A JOINT EFFORT BY VENDOR AND OCONEE

ADDITIONAL TESTING PERFORMED ON OTHER VENDOR’S FIELDBUS DEVICES
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

STRING MODS INSTRUMENT STRING UPGRADE

BEFORE

TRANSMITTERS INDIVIDUALLY COMMUNICATED PROCESS DATA TO CONTROLLER OR INDICATOR IN CONTROL ROOM

<table>
<thead>
<tr>
<th>REMOTE VALVE CONTROLLER</th>
<th>TO RECEIVER GAUGE (LOCAL OR REMOTE)</th>
<th>TO OPERATOR AID COMPUTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNEUMATIC</td>
<td>4-20mA OR PNEUMATIC</td>
<td>PNEUMATIC 4-20mA</td>
</tr>
<tr>
<td>PRESSURE CONTROL VALVE</td>
<td>PRESSURE TRANSMITTER</td>
<td>TRANSMITTER</td>
</tr>
<tr>
<td>WITH CONTROLLER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AFTER STRING MODS

MULTIPLE TRANSMITTERS ON SINGLE FIELDBUS SEGMENT CABLE

- PROCESS CONTROL CABINETS
- FIELDBUS H1 NETWORK
- PID TAKES INPUT DIRECTLY FROM PRESSURE TRANSMITTER
- FIELDBUS PRESSURE TRANSMITTER
- FIELDBUS TEMPERATURE TRANSMITTER
- FIELDBUS LEVEL TRANSMITTER
- OPERATOR HM A
- OPERATOR HM B
- REdundant ETHERNET NETWORK
- OPERATOR AID COMPUTER
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

FIELD BUS NETWORK
CABLES USE DISTRIBUTION TERMINATIONS STRATEGICALLY LOCATED IN PLANT

MODIFIED END CONNECTORS TO FIT ARMORED CABLES
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

FISHER DVC VALVE POSITIONERS INSTALLED ON 6 VALVES FOR PID CONTROL. 5 NEW CONTROLLER FACE PLATES ON HSI.

MAGNETROL GW RADAR REPLACEMENT FOR OBSOLETE FISHER DISPLACER LEVEL XMTR.
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDbus APPLICATION

NEWLY INSTALLED PROCESS CONTROL SYSTEM CABINETS IN CABLE SPREADING ROOM

5 CABINETS
500-640 DROP CAPABLE
SIGNIFICANT EXPANSION CAPABILITY INSTALLED
MILD ENVIRONMENT LOCATION
ENGINEERING WORKSTATION LOCATED HERE

REDUNDANT 120 VAC UPS LOCATED HERE. 208 SINGLE PHASE INPUTS USED

NETWORK INTERFACE TO PLANT COMPUTER
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

VERTICAL BOARD AFTER RECORDER REMOVAL AND FLAT PANEL HSI INSTALLATION

FRONT VIEW OF PCS FLAT PANEL HSI
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELD BUS APPLICATION

ORIGINAL PNEUMATIC “PEANUT” GAGES ABANDONED IN PLACE

REPLACED WITH FFB DISPLAYS
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

CONVERSION OF CONTROL ROOM DEVICES FROM ANALOG TO FIELDBUS

HUMAN FACTORS CONSIDERATIONS

OPERATIONS CONCENSUS AND BUY-IN REQUIRED TO SMOOTH INSTALLATION

DOCUMENTATION OF CONCENSUS IMPERATIVE

ANALOG TO DIGITAL TRANSITION ISSUES ABOUND

“ARTHRITE VS ACNE”
A NUCLEAR PERSPECTIVE ON A FOUNDATION FIELDBUS APPLICATION

SUMMARY

- INCREASE IN I&C UPGRADES AT NUCLEAR PLANTS OVER THE NEXT 10 – 20 YEARS
- OBSOLESCENCE, PLANT IMPACT & CORPORATE FISCAL STRATEGY WILL DICTATE UPGRADE PRIORITY
- AS ALWAYS - NEED FOR WELL PLANNED & INTEGRATED UPGRADE STRATEGY
- VENDOR & PLANT PARTNERING IMPERATIVE FOR SUCCESS
- PLACE FOR NEW NUCLEAR PLANT APPLICATION
 - NUCLEAR IS NOT OFF LIMITS
- FIELD BUS HAS A DEFINITE ROLE IN ALL POWER GENERATION